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Abstract

This paper characterizes inter-industry heterogeneity in rates of learning-by-doing and
examines how industry learning rates are connected with firm performance. Using data from the
Census Bureau and Compustat, we measure the industry learning rate as the coefficient on
cumulative output in a production function. We find that learning rates vary considerably among
industries and are higher in industries with greater R&D, advertising, and capital intensity. More
importantly, we find that higher rates of learning are associated with wider dispersion of Tobin’s
q and profitability among firms in the industry. Together, these findings suggest that learning
intensity represents an important characteristic of the industry environment.
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INTRODUCTION 

This paper examines a key aspect of the firm’s industry environment – the importance of 

learning from direct operating experience or “learning-by-doing” in determining business 

performance.  Industries vary considerably in the relevance of learning-by-doing to firm 

performance.  In some industries, products and processes may be relatively simple, or 

entrepreneurs and managers may be able to leverage external sources (e.g. specialized 

technology suppliers, consultants or competitors’ employees) to acquire knowledge about their 

business operations.  Other industry environments may not support such acquisition of 

knowledge or may involve complex, knowledge-intensive processes and products, thereby 

constraining firms to improve performance largely through direct experience.  In such 

environments, learning-by-doing may significantly affect firm performance.  

In this study, we focus on the importance of accumulated experience in the production 

process as a measure of the importance of learning-by-doing in an industry (“industry learning 

intensity”).  Further, we examine how differences in industry learning intensity are associated 

with business performance.  Using plant-level data from the US Census Bureau on over 55,000 

manufacturing plants from 1973 to 2000, we estimate the industry learning rate as the 

coefficient on prior cumulative output in a production function.  Applying these industry learning 

rates to firm data from Compustat, we find that the cross-sectional variation in business 

performance within an industry, as measured by the inter-percentile range (10th to 90th) of firm 

q and firm profitability, is much greater in industries with higher learning intensity.  Such findings 

suggest that learning intensity is an important characteristic of the industry environment that has 

been omitted from prior studies of firm and industry performance, given data limitations.   

This study draws from a long line of literature on organizational learning and “learning 

curves”, which have been studied since the 1930s.  The “learning curve” or the empirical 
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relationship between unit cost of production and operating experience has been estimated for 

numerous industries – e.g. ships (Rapping, 1965; Thornton and Thompson, 2001), chemicals 

(Lieberman, 1984) and semiconductors (Gruber, 1994 and Gruber, 2000) – and generally 

appear to follow a “power-law” i.e. the unit cost of production decreases at a decreasing rate 

with increasing experience, typically measured as prior cumulative output   While most studies 

have found that performance improves as organizations accumulate operating experience, the 

rate of learning appears to vary across industries.  In a review of 22 field studies on learning-by-

doing, Dutton and Thomas (1984) found that “progress ratios” (i.e. the percentage decrease in 

unit costs with a doubling of cumulative experience) ranged from 55% to over 100%. Learning 

rates have been found to vary within an industry and even within subunits of the same firm.  

Hayes and Clark (1986) examined productivity in factories and found that learning curves varied 

significantly across factories within the same company.  In an analysis of cardiac surgery 

departments implementing a new technology for minimally invasive cardiac surgery, Pisano, 

Bohmer and Edmondson (2001) found that the learning curve slope varied significantly across 

organizations.  While these studies have demonstrated that learning rates vary significantly 

among organizations and industries, these studies have drawn from limited data sets and have 

not attempted to characterize differences in learning rates across a broad range of industries.  

This study also links to another long line of papers, mostly in the Structure-Conduct-

Performance literature that examines how industry factors affect firm performance.  Many 

empirical studies have examined how the variables such as industry structure, R&D intensity 

and advertising intensity affect firm performance (See Schmalensee (1989) for a review.).  The 

industry learning intensity or the role of direct experience has not been studied (empirically) as a 

variable that could affect firm performance.  This is a bit surprising given that a number of 

studies, both theoretical and empirical, have argued that the learning curve has implications for 

competitive strategy and may be used to generate “first-mover advantages” (e.g. Spence, 1981; 
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Lieberman, 1987).    

This study makes two contributions to the existing literature on learning.  First, it 

provides a broad-brush characterization of plant-level learning-by-doing in over 100 SIC-3 digit 

industries in the US manufacturing sector.  This characterization reinforces findings in prior 

studies that industries vary considerably in their learning rates.  In addition, it provides 

reasonably comparable quantitative estimates of the importance of learning from direct 

experience across industries.  Most prior studies have focused on a single product or service, 

largely due to non-availability of longitudinal data across industries.  In this study, we use a 

large sample drawn from US Census Bureau data that span the entire US manufacturing sector.  

We adopt a production function approach and measure the industry learning intensity as the 

coefficient on prior cumulative output in a production function.  This approach is approximately 

equivalent to the traditional unit-cost learning curve and provides a reasonably uniform measure 

of learning rates across industries, albeit subject to some limitations.  We find that the industry 

learning rate displays considerable heterogeneity across industries and that it is positively 

correlated with industry capital-labor ratio, R&D intensity and advertising intensity, even after 

controlling for joint industry-year fixed effects or plant fixed effects.  These correlations are 

consistent with the intuitive notion that learning-by-doing may be more important in industries 

with greater process complexity, tacit knowledge and differentiated products.  

More importantly, our study demonstrates that industry learning intensity, as measured 

by plant-level learning-by-doing, has robust relationships with firm performance.  In particular, 

we find that the cross-sectional heterogeneity of firm performance within an industry, as 

measured by the inter-percentile range of firm profits or firm q, is higher in industries with higher 

rates of learning.  In other words, in such industries, the difference between the “best” and the 

“worst” (conditional on survival) firms is considerably higher.  Taken together, our findings add 

to the existing literature by introducing industry learning intensity as an important component of 
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the industry environment that may explain competitive heterogeneity.   

MEASURING INTENSITY OF LEARNING-BY-DOING 

The traditional approach to measuring learning-by-doing for a product is to estimate a power-

law function of the following form: 

C=AX-λ  (1) 

Where: 

C is the unit cost of the product;  

A is a constant; 

X is a measure of experience, typically prior cumulative production; and 

λ>0 is the rate of learning-by-doing.   

This formulation is purely empirical and is a reduced form representation of the various 

processes of learning from direct experience.  The disadvantage of this approach is that it 

requires detailed cost and production quantity data, which are not easily available for a large 

number of firms.  Our method for measuring learning-by-doing follows Bahk and Gort (1993) 

and is a variant of the traditional approach.  Bahk and Gort (1993) incorporate learning-by-doing 

within a production function and estimate the coefficients using data from individual 

manufacturing plants.  Following their approach, we can write: 

 

Yijt=Φjt(Kijt)αj(Lijt)βj (Xijt)λjνijt
   (2) 

 

Where  

Y is the current period real value added, measured as real revenues less real materials 

expenses;  

Φ is a constant (explained below); 

K and  L are real capital stock and quantity of labor, respectively;  
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X is prior cumulative output, a measure of experience; 

α, β and λ are all positive and less than 1;  

ν is a plant-specific term (explained below); 

and subscripts i, j and t refer to plant `i’, industry `j’ and year `t’ respectively.  

This formulation is an extension of the widely used Cobb-Douglas production function.  

In addition to the usual inputs of capital and labor, prior operating experience is considered an 

“input” into the production process in the sense that a higher level of operating experience 

increases output for any given level of capital and labor.  Hence, λ, the coefficient on prior 

experience denotes the industry learning intensity.   

We can interpret the learning coefficients obtained from this approach in two ways.  

First, the coefficient λ can be interpreted in a straightforward manner as the importance of 

learning (from direct experience) in the production process.  A higher value of λ implies a 

greater role for accumulated experience in the production process.  We could also interpret 

learning to be an improvement in “productivity” resulting from experience.  Productivity (or more 

precisely, Total Factor Productivity) as defined in the economics literature is a measure of the 

efficiency of physical resource use.  Hence, firms with higher productivity have the capability to 

generate more or better quality output using the same amount of physical resources.  There are 

two physical resources considered above, capital and labor.  So, we could define productivity of 

a plant as Pijt=Φjt(Xijt)λνijt , which is simply the term on the right hand side of Equation 2 excluding 

the physical resource terms.  The second term, Xijt
λ, is the increase in productivity resulting from 

accumulated direct operating experience and reflects learning-by-doing.  The coefficient λ here 

is a measure of the importance of direct experience in productivity improvement.  This definition 

also enables us to isolate learning-by-doing from other sources of productivity improvement.  

The first term, Φjt, captures any industry-wide improvements in productivity (subscript `j’ refers 

to industry).  This may occur, for instance, because of innovations in the equipment used in the 

industry, or because of improved practices that become available to all firms in the industry.  
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The last term, νijt, captures any improvements in productivity resulting from firm-specific factors 

other than learning-by-doing.   

Like the traditional learning curve, this approach is purely empirical and does not delve 

into the mechanisms of learning or even changes in firm behavior as a result of learning.  

Rather, it attempts to measure learning by attributing observed changes in firm performance to 

an observable proxy for prior experience.  Though a very simple and stylized representation of 

the complex learning processes at play, we believe that the coefficient λ so obtained can 

reasonably be interpreted as the importance of prior experience X in the production process.  It 

also offers a number of other advantages, some of which are specific to our context.  

First, our study is set in the US manufacturing sector, and it stands to reason that 

manufacturing processes would be important in determining overall firm performance.  Hence, 

the notion of a “production function” makes intuitive sense and focusing on the importance of 

experience in the production process or on productivity improvement as a measure of learning 

is meaningful.  Another advantage of this approach is that it controls for efficiency gains 

resulting from economies of scale.  A traditional learning curve includes only the cumulative 

output, which could easily proxy for the scale of production (Argote, 1999, p.16).  By including 

current levels of physical inputs in the specification, the production function approach controls 

for the possibility that economies of scale (which is a relation between current output and 

current inputs) rather than learning-by-doing (which depends on past output) is driving 

improvements.  As explained above, this approach also allows us to control for the possibility 

that improvements in manufacturing processes are resulting from industry-wide improvements 

in technology rather than due to direct experience.  This approach also has the nice property 

that under some reasonable assumptions, it is approximately equivalent to the traditional unit 

cost learning curve.  Finally, compared to a traditional learning curve formulation, this approach 

involves variables that are more easily available.  The main disadvantage is that these variables 

are usually available only at the plant level and not for individual products.  Hence, the learning 
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estimates obtained using this approach represent an average learning rate across products 

manufactured within a plant.1 

Other approaches to measuring learning-by-doing could be adopted.  For instance, firm 

(or plant) age has been used as a measure of experience in prior studies.  The main advantage 

of using age is that it is an easy-to-understand variable and is less affected by issues of serial 

correlation than cumulative output.  However, the big disadvantage is that using age ignores all 

the heterogeneity within any age cohort (for instance, not all 5-year old firms are alike, even 

within an industry).  Moreover, prior studies (Lieberman, 1984; Argote, 1999, p. 15) have found 

that cumulative output is a better measure of experience than time (or age).  Hence, in this 

paper, we prefer prior cumulative output to age as the measure of experience.   

HETEROGENEITY IN LEARNING-BY-DOING 

Learning-by-doing is generally considered to be the result of organizational search for 

better routines combined with trial and error experimentation (Levitt and March, 1988; Muth, 

1986).  Within such a framework, the need for learning from experience as well as the resulting 

rate of learning-by-doing depend on several factors that necessitate and/or alter the success of 

organizational search and experimentation processes.  The complexity of organizational 

processes involved is perhaps the most intuitive.  Other things being equal, more complex tasks 

will require and elicit higher investments in learning from experience.  The argument is similar 

for complex products and equipment used by the firm.  If the products produced by the firm are 

complex, it is likely that the firm’s consumers go through a learning process and suggest 

improvements, which if incorporated may manifest as learning-by-doing (von Hippel, 1988).  A 

third factor is the nature of knowledge involved.  If the knowledge generated from learning can 

                                                 
1 As we explain later, we select our sample in a way to reduce the possibility of very different 

products being manufactured in the same plant.  
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be easily codified, the need for learning from experience is reduced.  On the other hand, if most 

of the knowledge is tacit, it must be generated by “learning on the job”.  A closely related factor 

is the uncertainty of outcomes and the extent of exogenous “noise” in the processes.  If the 

outcome of a certain process is affected by factors beyond the control of and only incompletely 

observable by agents involved in the process, the agents will need to experiment many times 

before they can distinguish between productive and unproductive tasks.  In addition to 

complexity, the opportunities to imitate and learn from other firms also affect the need for 

learning from own experience.  For instance, in a market with very differentiated products, the 

knowledge acquired by one firm may only be incidentally relevant to other firms.  In such a 

market then, firms may have to rely on their own experience to develop their resources and 

capabilities.   

It is difficult to obtain good empirical measures of process complexity, tacitness of 

knowledge and product differentiation for such a large sample.  Hence, we rely on rather simple 

proxies that are easily available.  Industries with greater capital-intensity have been associated 

with greater process complexity (Lieberman 1984).  Another measure is industry wages – highly 

skilled workers may be required in industries with greater process complexity and knowledge 

tacitness.  Similarly, it is reasonable to believe that R&D-intensive industries have more 

complex processes and involve a higher degree of knowledge tacitness.  One could also 

reasonably argue that R&D and advertising-intensive industries are likely to be more 

differentiated than industries with little R&D or advertising.  Following the line of reasoning 

outlined above, we would then expect high learning-by-doing in such industries.  To summarize, 

we expect a positive relationship between the importance of experience in an industry and the 

industry capital-labor ratio, wages, R&D and advertising intensity. 
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INDUSTRY LEARNING-RATE AND HETEROGENEITY OF FIRM PERFORMANCE  

There are numerous reasons to expect a positive association between the industry 

learning intensity and the inter-firm heterogeneity of performance within that industry.  First, the 

learning process is uncertain and complex.  The probabilistic nature of the underlying search 

processes means that similar investments by equally capable agents are unlikely to result in the 

same degree of success.  Moreover, the learning process is fraught with numerous behavioral 

imperfections and mistakes (Levitt and March, 1988; Levinthal and March, 1993) that further 

increase the uncertainty of outcomes.  These uncertainties and mistakes inherent in the learning 

process naturally serve to make each firm’s evolutionary path, and hence, its bundle of 

resources and capabilities, distinctive.  Hence, as learning becomes more important to firm 

performance, the resource based view (RBV), which argues that competitive heterogeneity in an 

industry arises from heterogeneity of firm resources and capabilities (Barney, 1991; Peteraf, 

1993), would suggest that we should observe more performance variations across firms.  

Uncertainty in the learning process may also increase heterogeneity of firm performance by 

exaggerating the ambiguity regarding a rival’s resources and capabilities.  If firms could 

completely observe their rival’s learning process, they could then imitate them, potentially 

reducing competitive heterogeneity.  However, with uncertain learning, even though some 

aspects of the learning process may be observable, rivals may not be able to accurately identify 

the links between cause and effect, leading to “uncertain imitability” (Lippman and Rumelt, 

1989).2    

                                                 
2 Along similar lines, Rivkin (2000) uses an agent-based simulation model to suggest that in 

settings with more complex strategies (which is likely if learning is important), imitation efforts 

are less likely to be successful and consequently, that the “distribution of firm performance will 

be broader”. 
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Another distinctive aspect of the learning process that can potentially increase 

competitive heterogeneity is its dynamic character.  Learning by doing takes time and hence, 

firms explicitly consider how today’s decisions may affect tomorrow’s performance.  Issues such 

as path dependence and time compression diseconomies become more important, thus 

increasing differences between firms (Dierickx and Cool, 1989).  Another possibility is that firms 

are willing to incur short-term losses to achieve longer-term gains from learning.  This may be 

particularly true for younger firms that are still accumulating experience.  In an industry with no 

learning, profits may remain stable over time and firms with losses in the first one or two years 

of their life will exit.  On the other hand, if profits can possibly increase with time due to learning, 

firms may be able to offset the initial losses with subsequent gains.  Hence, there may be more 

loss making firms in industries with high learning and we may observe increased competitive 

heterogeneity.  

A third aspect of learning by doing that may increase heterogeneity of firm performance 

is its self-reinforcing character.  Suppose firms enter the market with different capabilities.  

Then, at entry, the “high capability” firms will typically choose a larger scale of operations and 

will be more efficient than their “low capability” counterparts.  Since firm capabilities are 

generally persistent, “high capability” firms will have higher level of cumulative output than “low 

capability” firms at any given time (assuming they entered at the same time), which in turn 

generates an additional performance advantage for “high capability” firms in the presence of 

learning-by-doing.  Obviously, this self-reinforcing mechanism will be stronger in high learning 

industries and hence, firm performance will tend to be more heterogeneous in high learning 

industries.   

To summarize, we should expect a positive relationship between industry learning 

intensity and firm performance heterogeneity within an industry.   
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DATA AND EMPIRICAL ESTIMATION 

Data 

The data for this study come from two sources: Compustat and the US Census Bureau. 

There are two stages of analyses in this paper.  First, we use plant-level data from the US 

Census Bureau to estimate the learning coefficients for each industry.  We then use these 

estimated industry learning coefficients as independent variables in regressions that use 

Compustat data.  These two data samples are described below. 

First Stage Plant-level Sample (Census Bureau Data) 

This sample is obtained from confidential micro-data available at the US Census Bureau.  

Since 1972, the US Census Bureau has been conducting a Census of Manufacturing (CM) 

every 5 years (there were two previous Censuses in 1963 and 1967).  These censuses collect 

detailed plant-level data from all US manufacturing establishments with at least one employee.  

The data collected generally include the value of plant shipments, materials and energy inputs, 

employment, production hours, payments to labor, book values of physical assets, capital 

expenditures, inventories and ownership (single plant firm v. part of a multi-plant firm).  In 

addition, the US Census Bureau also performs an Annual Survey of Manufactures (ASM) that 

collects similar data from a sample of US manufacturing establishments.  In particular, the 

annual surveys are designed to get an overview of the sector during the inter-census years and 

hence, place considerable weight on large plants and plants belonging to multi plant firms.  To 

account for new entrants, a sample of new entrants is added to the ASM sample every year.  

The Census Bureau has collated the data from all these censuses and surveys and 

linked them through a longitudinal identifier to create a dataset (sometimes called the 

Longitudinal Research Database or LRD), which it makes available to researchers at Census 

Research Data Centers, subject to access restrictions and disclosure constraints.  The most 

important disclosure constraint is that no data that can identify or relate to a single firm or plant 
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can be disclosed.  Hence, in this paper, we do not identify statistics such as the median, 

minimum or maximum for variables obtained using Census Bureau data.  For further details on 

this dataset, CM or ASM, please refer the US Census Bureau website. 

Our sample is drawn from the LRD, which contains over 4 million plant-year 

observations from 1963 to 2001.  Since the Census Bureau expends more effort on larger 

plants and firms, the quality of data for such cases is better.  Also, they tend to have greater 

continuity of observations over time.  In order to ensure reasonable data quality, we apply some 

sample selection criteria, the most important of which are: 

- Eliminating all plants that were established before 1973 or after 1997.  1973 is the first year 

of the annual ASM and it is not possible to reliably obtain the entry year for plants that first 

appear in the 1963, 1967 or 1972 Censuses.  In 1997, the Census Bureau switched from 

the SIC to NAICS classification system.  Hence, we excluded plants established after 1997 

to minimize errors from industry misclassifications.3   

- Excluding all subsequent observations for a plant if the gap between two consecutive survey 

years for that plant is more than two years.  This is done to ensure a higher reliability of our 

main variable, prior cumulative output. 

- Removing all plants that have a Primary Industry Specialization Ratio (the output share of 

the primary 4-digit SIC industry in the case of a multi-product plant) of less than 75%.  This 

is done to ensure homogeneity within an industry. 

- Dropping outlier plants are in the top 0.5 percentile of capital-labor ratio or of growth in 

number of employees, shipments or capital expenditure. 

The resulting sample contains 182,603 plant-year observations.  Summary statistics for this 

sample are provided in Table 1a.  

                                                 
3 The older plants that continued after 1997 were assumed to stay in the same SIC-4 code as 

they were in 1997.  
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Second Stage Sample (Compustat Data) 

We use Compustat to obtain data for the second stage sample.  We compute firm q as 

the ratio of market value of assets to book value of assets, and firm profitability as the ratio of 

operating profits before depreciation to total assets.4  We then eliminate all outlying 

observations in the top and bottom 1% in terms of firm q or firm profitability.  These data on firm 

performance are used to obtain the dispersion in firm q and firm profitability for each SIC-3 digit 

industry in each year from 1973 to 2000.  We also obtained other industry level variables such 

as industry R&D and advertising intensity from Compustat.  The industry classification was 

based on the primary industry code.  The resulting sample contains 1,523 industry-year 

observations.  Summary statistics for this sample are included in Table 1b.  

----------------------------------------- 

Insert Table 1 about here 

----------------------------------------- 

Variables 

 The important variables used in this study are described below.  The first six pertain to 

the first stage plant-level sample and the last relates to the second stage industry-year sample.  

Output. For any year before 1996, output for any plant is generally defined as the sum 

of the value of the plant’s shipments (total plant revenues, deflated using SIC-4 industry-year 

deflators available on the NBER website) and the difference between year-beginning and year-

                                                 
4 Specifically, the market value of assets is defined as the sum of the firm’s market capitalization 

(data24*data25) and book value of assets (data6) less the book value of common stock 

(data60) and deferred taxes (data74).  This definition follows Kaplan and Zingales (1997).  

Data13 in Compustat is taken to be the operating profit before depreciation.  
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ending deflated work in process and deflated finished goods inventories.5  For years including 

and after 1996, due to the unavailability of inventory data, output is simply defined to be the 

deflated shipments. 

Value Added. Value Added is defined as the difference between real output and real 

materials (described below).  

Labor. We define quantity of labor to be the labor hours expended in production worker 

equivalents.  Labor hours for any plant are computed by dividing the total wage bill for the 

establishment by the average hourly wage for production workers in that establishment.  

Materials. Real materials are defined as the sum of deflated cost of material purchases, 

external contract work, fuel and electricity.  

Capital Stock and Capital Investment. We use the perpetual inventory approach to 

compute real capital stock.  We compute separate stocks for buildings (or structures) and 

machinery.  Real capital stock (kit) in any given year, say for machinery, is computed as kit=(1-

d)kit-1+Iit-1 + Rit where d is an industry-year specific depreciation rate for machinery, I is the 

capital investment in machinery (deflated by an industry-year specific investment deflator for the 

year t-1) and R is the capitalized value of capital equipment rentals.  If an establishment is not 

observed every year, we impute gross investment linearly (i.e. Iit=0.5*(Iit+Iit-n)*(n-1), where Iit is 

the imputed investment for period t and n is the gap between the two survey years).  

Prior Cumulative Output. This is used as a proxy for accumulated operating 

experience.  Prior cumulative output is defined as the sum of real output through the end of the 

previous period i.e. Xit=sum(oi1, oi2…oit-1)=Xit-1+oit-1, where o is real output  If an establishment is 

                                                 
5 This definition is identical to that implicitly used by the Census Bureau in its computations of 

plant “value added” (see below).  The Census Bureau uses slightly different definitions in some 

industries due to differences in the nature of the manufacturing processes.  We follow the 

Census Bureau’s definitions in all these cases.  A detailed description is available on request.  
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not observed every year, we impute output linearly (i.e Oit=0.5*(oit+oit-n)*(n-1), where Oit is the 

imputed output for period t and n is the gap between the survey years).6   

Heterogeneity of Firm Performance.  We use firm q and firm profitability as measures 

of firm performance.  Unlike most studies in the literature, we use direct measures of 

performance heterogeneity, specifically the cross-sectional dispersion of firm performance.  We 

use three measures of cross-sectional dispersion of firm q and firm profitability.  As the baseline 

measure, we take the difference between the 90th percentile and 10th percentile (of firm q or 

profitability) in an industry during a given year.  The advantage of using this measure as 

opposed to say, variance is that it is an ordinal measure and hence, much less affected by the 

presence of outliers.  As robustness checks, we use the inter-quartile range (or the difference 

between the 75th and 25th percentiles) and the standard deviation of firm profitability (or q) as 

other measures of heterogeneity.  

Empirical Estimation 

In the first part of our study, we use the Census data to estimate the learning rates for 

each SIC-3 industry and characterize the heterogeneity in industry learning rates.  In the second 

part, which addresses the link between industry learning intensity and the heterogeneity of firm 

performance, we use the estimated industry-by-industry learning coefficients as explanatory 

variables in regressions with the range of firm performance as the dependent variable.   

                                                 
6 This measure of experience does not incorporate “organizational forgetting” and hence, does 

not differentiate between a small, old firm and a large, young firm.  As rough robustness checks, 

we estimated (with OLS) the learning coefficients using (i) the cumulative output till t-2 as a 

measure of experience and (ii) including plant age as another variable in Equation 3.  The 

learning coefficients so estimated were highly correlated with our baseline estimates  
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Measuring industry learning intensity. To proceed with empirical estimation of the 

importance of learning, we use the logarithmic version of Equation (2): 

yijt=ajt+αj.kijt+βj.lijt+ λj.xijt+εijt  (3) 

Where 

y is log (Value Added), k, l, and x are, log(L), log(K) and log(X) respectively 

a is log(φ) and ε includes log(ν) 7.  The choice of value added rather than output was primarily 

driven by the fact that some of the estimation approaches (described below) are applicable only 

to value added, and our desire to keep a consistent approach throughout the paper.8  

The coefficient of interest is λj, the learning intensity of industry `j’.9  We estimate 

Equation (3) for each SIC-3 digit industry that has more than 50 plants.  Estimating the 

production function industry-by-industry ensures that we are excluding the possibility that 

differences in returns to scale are being spuriously captured as learning.  The terms ajt in 

Equation (3) are coefficients on industry-year dummies, which capture all inter-temporal 

                                                 
7 There is, however, one subtle difference between Equations (2) and (3) in the interpretation of 

ε and a. In Equation (2), we interpreted φ and ν to mean improvements in productivity resulting 

from factors other than learning-by-doing.  In Equation 3, a and ε would also include classical 

measurement error in the dependent variable.   

8 Nevertheless, where possible, we performed robustness checks using output as the 

dependent variable. The results closely match those with value added. 

9 Since we treat the learning environment to be an industry characteristic, we estimate only one 

learning coefficient per industry.  However, learning rates may change with time.  As a 

robustness check, we estimated separate learning rates for the periods 1973-1984 and 1985-

2000 (roughly equal sub-samples).  The Spearman rank correlation between these two sets of 

coefficients was 0.54 and between these coefficients and our baseline estimates, 0.80 and 0.87 

respectively, all statistically significant at or below the 0.01% level.   
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movements in the average industry productivity, including any industry-wide technology 

improvements.  Hence, the econometric identification of the coefficients comes solely from 

cross-sectional deviations from the industry-year averages and not from changes in mean 

industry productivity over time.   

 First, we estimate equation (3) using OLS on the entire sample of plants.  It is known 

that OLS estimates of labor are biased upwards while the capital coefficients are biased 

downward if there is unobserved plant specific heterogeneity (Griliches and Mairesse, 1995).  

Also, since including prior cumulative output on the right hand side is equivalent to adding a 

lagged dependent variable, the coefficient on prior cumulative output may be biased upward in 

the presence of persistent, unobserved heterogeneity.  Another potential problem is that of 

survivor bias, which will bias the capital and prior cumulative output coefficients downward since 

firms with larger capital and experience can survive more negative “performance shocks”.  To 

test for robustness to these concerns, we use three different estimation approaches in addition 

to OLS.   

The first two approaches rely on straightforward extensions of the methods used in Olley 

and Pakes (1996) and in Ackerberg, Caves and Frazer (2005), referred to as OP and ACF 

respectively in this paper.  Here, we only sketch these methods. Appendix C provides some 

details as relevant to this paper. (For more technical discussions, please refer to the original 

articles.)  Briefly, these methods rewrite equation 3 as  

vijt=ajt+αj.kijt+βj.lijt+λj.xijt+ωijt+θijt 

where ωijt is a firm-specific heterogeneity (e.g. management quality) that is not known to us but 

known to the firm and incorporated it into its decisions and θijt is a completely exogenous error 

term.  They then make two structural assumptions that (i) some observable decision (e.g. capital 

investments or materials) is an increasing function of ω, which lets us estimate the 

heterogeneity ω using the observed decision and that (ii) the decision on the level of some 

inputs at time ‘t’ is made at a time prior to ‘t’ (specifically, prior cumulative output or capital at 
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time ‘t’ is completely determined at time t-1 and hence, are based only on ωijt-1), which then 

implies that these decisions must be unaffected by any changes between ωijt and ωijt-1. This lets 

us generate moment conditions that can be used in a GMM framework to estimate the 

coefficients.  The two methods differ primarily on the assumptions about labor input (see 

Appendix C).  These approaches address estimation problems due to endogeneity and survivor 

bias, albeit within bounds of their structural assumptions.  The OP approach has been shown to 

generate unbiased productivity estimates and quite robust to a number of complications 

(Biesebroeck, 2004).  The ACF approach being a simple extension of the OP approach will 

likely have similar properties.  Nevertheless, arguments could be made that the underlying 

structural assumptions may not apply uniformly across all industries.  

Finally, we use a specification with plant fixed effects. Simply adding plant fixed effects 

exacerbates some of the problems, particularly severely biasing the capital coefficient 

downward (Griliches and Mairesse, 1995).  The same pattern holds for the experience 

coefficient, particularly with short panels.  Nevertheless, we re-estimated equation (3) using 

plant fixed-effects on a “survivors sample” that excludes all plants that do not survive for at least 

8 years.10  The disadvantages of this sample are the fewer industries with enough observations 

and the much larger standard errors of estimation.  

To summarize, while all the above methods have their own potential shortcomings, our 

approach is to show that our subsequent results on performance heterogeneity are largely 

robust to these alternative estimation methods.   

Inter-industry heterogeneity in learning.  In addition to estimating individual learning 

coefficients for each industry, we also estimated a pooled regression to identify factors that may 

characterize inter-industry differences in learning rates.  To do so, we adopted the following 

                                                 
10 The choice of 8 years, though a bit arbitrary, was driven by the fact that panels longer than 8 

years meant much smaller sample sizes.   
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regression model, which includes a series of terms interacted with xijt, the cumulative output 

measure: 

yijt=ajt+α.kijt+β.lijt+λ..xijt+λ1.Cjt.xijt+λ2.Wjt.xijt+λ3.Rjt.xijt+λ4.Ajt.xijt+εijt (4) 

Where  

C is industry capital intensity (capital stock to employment ratio); 

W is industry wages; 

R is industry R&D intensity (R&D expenditure divided by sales); and 

A is industry advertising intensity (advertising expenditure divided by sales). 

As in the industry-specific learning regressions, the unit of analysis is plant-year, and we 

allow for industry-year dummies ajt.  However, we constrain the coefficients on capital and labor 

to be constant across industries (we tested the robustness of our results to this assumption by 

allowing these coefficients to vary by SIC-2 industry).  For this analysis, industry R&D and 

advertising data are obtained from Compustat.  We use OLS to estimate Equation 4 with plant 

fixed effects and instrumental variables specifications as robustness checks.  

Industry learning intensity and heterogeneity of firm performance. In order to 

examine how industry learning is related to heterogeneity of firm performance, we use 

regressions of the following form: 

πjt=at+b.λj+c1.Rjt+c2.Ajt+c3.Cjt+c4.Sjt+c5.Njt+c6.Pjt+εjt  (5) 

Where πjt is 90th to 10th percentile range of firm performance, either firm q or firm profitability, in 

industry j during year t; 

λj is the estimated industry learning intensity from Equation (3); 

R is industry R&D intensity (R&D expenditure/sales); 

A is industry advertising intensity (advertising expenditure/sales); 

C is industry capital intensity (total assets/sales); 

P is average industry profitability (operating profits/ total assets); 

N is the number of firms in an industry; and, 
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S is industry size measured as total industry sales. 

Note that the level of analysis here is the industry-year.  For this analysis, we rely on data from 

Compustat.  Hence, the only variable in equation (5) that comes from outside Compustat is the 

estimated learning intensity.   

A brief note on the choice of control variables is in order.  Intuitively, our earlier 

arguments on the inter-industry heterogeneity in learning rates also apply to any factor that 

increases complexity, tacitness or differentiation.  R&D, advertising and capital intensity can 

logically be classified as such factors and would tend to increase the heterogeneity of firm 

performance.  For instance, industries with high R&D or high advertising intensity may be very 

differentiated and hence, performance more dispersed.  Furthermore, these are sunk costs, 

which increase the incentives for firms to stay in the market once they have incurred those costs 

(Gschwandtner and Lambson 2006), thereby increasing inter-firm heterogeneity.  Average 

industry profitability may reflect inherent risk and hence, may be associated with a higher 

variance of returns.  Finally, we add the number of firms and industry size as factors that may 

potentially increase measured heterogeneity.   

RESULTS 

Inter-Industry Heterogeneity In Learning-By-Doing  

Table 2 presents the results of estimating Equation 3 for the pooled sample.  Model 1 is 

a simple Cobb-Douglas production function, excluding the prior experience term that captures 

learning-by-doing. Model 2 expands on Model 1 by adding the prior experience term. The 

coefficient on prior cumulative output is 0.26, which implies a 16% gain in productivity for each 

doubling of cumulative output.  This model, however, does not control for the possibility that the 

rate of technological improvement varies across industries.  For instance, firms in an industry 

with significant technological advances may show productivity improvements even without 

learning-by-doing.  A robust approach to address this is to include a dummy variable for each 
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industry-year combination, which will control for all inter-temporal changes (including 

technological improvements) in the average industry productivity.  In other words, by including 

these fixed effects, we focus solely on deviations of plant productivities from industry-year 

averages.  While our baseline definition of industry is at the SIC-3 digit level, the size of our 

pooled sample permits us to follow a far more conservative approach and use SIC-4 digit 

industry-year fixed effects.  Model 3 includes 9,967 separate SIC-4 industry-year dummies, 

which control for all technological improvements in each SIC-4 industry (and consequently, in 

each SIC-3 industry).  The estimated learning coefficient falls to 0.23 when these controls are 

added.  

We then estimated Equation 3 using OLS for each of the 117 SIC-3 industries that has 

more than 50 plants.  Models 4-1 to 4-117 allow each industry to have its own coefficients on 

capital, labor, and prior cumulative output.  They also allow for year dummies within each SIC-3 

industry and hence, control for SIC-3 industry-wide productivity improvements.  Given space 

constraints, we present only the coefficients on cumulative output from these models in 

Appendix A (Column 3).  Coefficients on capital and labor are available on request.  Figure 1 

presents a histogram of the coefficients on cumulative output.  As expected, there is a 

significant variation in learning intensities across industries, ranging from just above 0 to almost 

0.60 with an average of 0.22 (almost identical to the estimate for the pooled sample in Model 

3).11  We also estimated Equation 3 using a plant-fixed effects specification for a smaller sample 

(49 industries) that includes only firms that survive for at least 8 years. Figure 1b presents a 

histogram of these learning coefficients.  The distribution of the learning coefficients is similar for 

the OLS and fixed effects specifications though the mean coefficient using the fixed effects 

                                                 
11 When output is used as the dependent variable (instead of value added), the average 

learning intensity across the 117 industries is about 0.11.  Learning coefficients based on output 

as a dependent variable are available on request.  
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specification is lower (as expected). 

----------------------------------------- 

Insert Figure1 about here 

----------------------------------------- 

Finally, we used the OP and ACF approaches explained above to estimate the learning 

rates for industries with sufficient data.  Appendix A presents the industry-by-industry learning 

coefficients from Equation 3 using the four different approaches, as well as the industry ranks 

based on the OLS learning coefficient (Column 2).  While the individual coefficients vary in 

magnitude across the different methods, they are highly correlated with each other.  The 

Spearman’s rank correlations among OLS, OP and ACF estimates range from 0.57 to 0.74 and 

are statistically significant at the 0.01% level.  The estimates from fixed effects specification with 

value added as a dependent variable are, however, much less correlated with the others (0.09 

to 0.18), and the correlations are statistically insignificant. 12 

----------------------------------------- 

Insert Table 2 about here 

----------------------------------------- 

We now try to characterize the heterogeneity in learning intensity.  From Appendix A, we 

can see that the top 6 industries based on the OLS learning coefficient are 357 (computers), 

283 (pharmaceuticals), 291 (petroleum refining), 386 (photographic equipment & supply), 287 

(agricultural chemicals) and 289 (miscellaneous chemicals).  The lowest in the list are 317 

(leather goods) 322 (glass products), 262 (paper mills), 228 (yarn & thread mills) and 311 

                                                 
12 With output as a dependent variable for the fixed effects specification, the correlation 

improves considerably to about 0.28 and becomes statistically significant at the 5% level.  For 

purposes of consistency, however, we work with value added as a dependent variable.   
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(leather tanning).  This list suggests a positive association between complex, knowledge-

intensive and capital-intensive settings, and the rate of learning-by-doing.   

To test this more formally, we estimate Equation 4 using OLS.  Again, our pooled 

sample permits us to adopt a more conservative approach and use a finer SIC-4 digit industry 

definition.  The variables of interest are the interaction terms between prior experience and 

industry factors.  Models 5 and 6 in Table 3 use a larger sample for which we have complete 

data on industry wages and the capital-labor ratio, omitting the industry R&D and advertising 

intensity terms.  Model 5 includes only year indicators while Model 6 includes a full set of 

industry-year dummies.  In both cases, the learning coefficient is significantly higher in 

industries with greater capital intensity.  The interaction effect of industry wages on prior 

experience becomes insignificant once industry-year effects are controlled for.   

Model 7 estimates Equation (4) with a smaller data set for which we have complete 

industry R&D and advertising data from Compustat.  The coefficient on prior experience is 

significantly higher in industries with higher capital-labor ratio and greater R&D and advertising 

intensity.  Models 5-7 assume that the coefficients on capital and labor are the same across 

industries; Model 8 repeats the tests in Model 7, allowing the coefficients on capital and labor to 

vary by SIC-2 digit industry.13  The results in Model 8 are not substantially different from Model 

7.  Finally, we estimate Models 9 and 10 to check if these results are robust to the inclusion of 

plant fixed effects.  Model 9 does not include any of the direct terms while Model 10 includes 

them.  While the effects decrease considerably in magnitude (as expected) in Model 9, the 

direction and statistical significance of the results persist.  The significance of the interaction 

terms increase considerably when the direct terms are included.  However, we must be cautious 

because the year-on-year changes in variables such as R&D intensity are very small.  Finally, 

                                                 
13 The choice of SIC-2 industry was dictated by the cost of computation. Allowing the capital and 

labor coefficient to vary by SIC-3 industry would have meant estimating over 350 coefficients. 



Industry Learning Environments and the Heterogeneity of Firm Performance  

 

26

we used an instrumental variables specification with once-lagged variables as instruments.  The 

economic substance and statistical significance of these results (available on request) were very 

similar to those in Models 7 and 8. 

To summarize, we find that the learning rate increases with industry capital intensity, 

R&D intensity, and advertising intensity, factors that are likely to reflect process complexity, 

knowledge tacitness and product differentiation. 

----------------------------------------- 

Insert Table 3 about here 

----------------------------------------- 

Industry Learning Intensity And Firm Performance Heterogeneity.  

We now examine the important question of how these variations in industry learning 

intensity are related to firm performance heterogeneity.  Figure 2 gives an idea of the potential 

linkages.  It presents the distributions of firm profitability and firm q (relative to the industry-year 

average) for “high learning” (i.e. industries with learning rates above the median learning rate) 

and “low learning” industries.  Figure 2 shows that in the “high learning” industries the profit 

distribution has a thicker left tail; and both tails of the firm q distribution are thicker.  Thus, both 

measures of firm performance have greater dispersion in “high learning” industries.  To test this 

formally, we use the industry estimated learning coefficients (shown in Appendix A) as 

independent variables in Equation 5, with the range of firm performance within an industry as 

the dependent variable.   

 Table 4 presents the results of estimating Equation 5 for our two measures of 

performance heterogeneity. Since all the variables except the learning coefficient have very 

skewed distributions, we use their logarithms rather than the original values.  Models 11 to 14 

use the range of firm profitability as the dependent variable while Models 15 to 18 use the range 

of firm q.  The results are strongest for heterogeneity in firm profitability (Models 11 to 14).  The 



Industry Learning Environments and the Heterogeneity of Firm Performance  

 

27

“industry learning intensity” coefficient varies from 0.203 with learning estimates using fixed 

effects specifications to 0.926 when OLS based learning estimates are used.  However, 

regardless of the approach adopted, the coefficient on industry learning intensity is always 

statistically significant.  This implies that the difference between the “best performers” and the 

“worst performers” is considerably greater in industries with high learning.  Similar results hold 

when we use firm q as a measure of firm performance. With OLS, OP and ACF based learning 

coefficients (Models 15-17), the coefficient on industry learning is positive and statistically 

significant at the 1% level.  With plant fixed-effects based learning coefficients (which are 

available only for a smaller set of industries), the coefficient turns statistically insignificant.  

However, we must note that the learning coefficients themselves are estimated with error and 

with greater error in non-OLS specifications; this implies the estimated coefficients on industry 

learning intensity in Table 4 are downward-biased and more so when using learning estimates 

from non-OLS specifications.  In summary, it appears reasonable to conclude that firm 

performance-heterogeneity is greater in industries with higher learning intensities.   

 Turning to the other coefficients in the regressions, sunk costs (particularly R&D and 

advertising, and to an extent, capital intensity) are also linked to increased dispersion of firm 

performance.  This is broadly in line with Gschwandtner and Lambson (2006), who found that 

sunk costs tend to increase profit variability in an industry, and theoretical industry models in the 

economics literature such as Hopenhayn (1992) that predict increased productivity dispersion 

due to higher sunk costs.14  The mean industry profitability appears to be associated with 

increased heterogeneity of firm value (which is consistent with a higher risk-higher return story) 

but rather counterintuitively, with decreased profitability dispersion.  Another counterintuitive 

result is that large industries (by industry sales) tend to have lower heterogeneity.  We do not 

                                                 
14 In an unpublished working paper, Rivkin (2001) also finds that the dispersion of firm profit 

rates is higher in industries with opportunities for R&D and product differentiation.   
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have a good explanation for this except, perhaps, that they may be mature industries.  

Industries with many firms, in line with our intuition, show a wider dispersion.   

----------------------------------------- 

Insert Table 4 about here 

----------------------------------------- 

Robustness Checks 

We performed a series of tests to confirm that we are most likely measuring the effect of 

learning-by-doing and that our subsequent results on the heterogeneity of firm performance are 

robust to alternative specifications.  Briefly, the tests show that factors such as survivor bias, 

sample selection, R&D investments, measurement errors in capital, choice of production 

function form, and industry life cycle effects are not driving the observed heterogeneity in 

learning rates.  The details are presented in Appendix B.  Based on our tests, it appears safe to 

conclude that our estimates provide a reasonably robust rank ordering of industries based on 

their learning rates.   

We tested the robustness of our results on the connection between learning and firm 

performance by running the same type of regressions as in Table 4, but with different measures 

of performance heterogeneity, level of aggregation, choice of time periods, assumptions about 

error correlation structures etc.  Table 5 presents the coefficients on the learning estimates from 

those regressions. (Each line in Table 5 is comparable to line 1 from Table 4).  In a majority of 

the regressions, learning shows a significant positive association with the heterogeneity of firm 

performance.  Appendix B presents additional details.   

DISCUSSION AND CONCLUSION 

It is widely accepted and documented in the strategy literature that the industry 

environment affects competitive heterogeneity.  In addition, many studies have shown that the 

rate of organizational learning varies greatly across firms and industries.  Nevertheless, the 
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connections between learning intensity and the industry competitive environment have not been 

systematically explored, given data limitations.  Our paper provides quantitative evidence that 

supports the case for treating learning intensity as a fundamental characteristic of the industry, 

much as R & D and advertising.  Furthermore, our paper facilitates empirical implementations of 

such a concept by providing reasonably comparable estimates of learning intensity for a wide 

range of industries, encompassing most of the US manufacturing sector.   

To our knowledge, this study is the first to provide a quantitative comparison of learning 

rates across such a broad set of industries.  The range of learning slopes from the OLS learning 

coefficients (computed as 2-λ, where λ is the learning coefficient) varies from close to 100% (or 

no learning) in SIC 262 (Paper Mills) to a maximum of 68% in SIC 283 (Drugs) and 66% in SIC 

357 (Computers).15  This is comparable to the range of estimates in prior studies.  For instance, 

the survey by Dutton and Thomas (1984) found that the median learning slope in about 22 

industry-specific studies was about 80% and the range was from 55% to 110%.  In our analysis, 

the range of learning slopes obtained from other estimation approaches differ, but not 

unreasonably so (OP: 57% to 106%; ACF: 51% to 107%; FE: 63% to 112%).  All are consistent 

with the range of learning slopes found in prior work. 

Our study goes beyond simply establishing the heterogeneity in learning rates to identify 

some broad patterns in these learning rates, as indicated in Table 3.  Even within the limited 

interpretation permitted by our crude proxies, the results are consistent with the argument that 

learning from own experience may be more important in environments where process 

complexity is high, tacit knowledge is critical, and products are differentiated.  Knowledge 

transfers between firms, and perhaps even within firms, is naturally harder in such 

environments, and firms may have to rely more on their experience.  Though intuitive, this study 

                                                 
15 A learning slope of x% implies that a doubling of cumulative output leads to a (100-x)% 

increase in productivity. 
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is the first attempt to quantify these patterns in a systematic way across a broad sample of 

industries. 

 The second contribution of our paper is to demonstrate a robust association between 

the industry learning intensity and the cross-sectional heterogeneity of firm performance.  The 

results in Tables 4 and Table 5 show that firm performance is more heterogeneous in high 

learning industries.  More importantly, the economic significance of this effect seems to be 

large.  Based on the coefficients in Model 11, an increase of one standard deviation in the 

learning coefficient (0.097) is associated with a 31% (=0.926*0.097/0.2891) increase in the 

profitability range.    Similar calculations with Models 12, 13 and 14 give estimates of 24%, 29% 

and 10% respectively. These are comparable to or even higher than the effect of an increase in 

R&D or advertising intensity.  For instance, using coefficients from Model 11, an increase in 

R&D intensity by one standard deviation from the mean (i.e. from 0.0217 to 0.0443) is 

associated with a 12% (=0.050*[ln(0.0443)-ln(0.0217)]/0.2891) increase in profitability range.16   

Thus, we have shown that the cross-sectional variation in firm performance increases 

with the learning intensity of the industry.  While a detailed empirical examination of the 

underlying reasons is beyond the scope of this paper, we briefly offer some “informed 

conjectures”.  Regressions similar to those in Table 4 with the top and bottom deciles of the firm 

profit distribution as the dependent variable show that the increased dispersion in firm profits is 

almost entirely due to a downward shift in the 10th percentile of profits rather than an upward 

shift in the 90th percentile.  In contrast, the heterogeneity of firm q appears to be mostly due to 

an upward shift in the 90th percentile rather than a decrease in the 10th percentile.  These results 

                                                 
16 The calculated impact of learning may also be partly high because it is measured with greater 

error than R&D (and hence, a standard deviation increase in learning may be “more” than a 

standard deviation increase in R&D).  However, the fact that all approaches give the same order 

of magnitude should give us some confidence in the assessment.   
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are consistent with a story where learning is uncertain and only the “learning the right thing” is 

rewarded.  Additional support for this argument comes from examining the link between learning 

intensity and the mean firm performance in an industry.  Specifically, if uncertain learning 

creates “winners” that grow to be bigger than others, the size-weighted average firm 

performance (e.g. total industry profits divided by total industry assets) should be significantly 

higher in industries with high learning.  Indeed, this industry profit ratio is about 14% in “high 

learning” industries compared to 11% in “low learning” industries.  The size-weighted industry 

average q is 1.29 in “high learning” industries, vs. 1.08 in “low learning” industries.  Moreover, 

regressions similar to those in Table 4 with the mean industry profitability as the dependent 

variable show a strong positive relation between learning intensity and mean industry 

profitability.  Though by no means conclusive, such evidence points to a story more like the 

uncertain learning-by-doing in Levitt and March (1988) and Levinthal and March (1991) rather 

than the sure-shot learning curve often assumed in the economics literature.  

As with all empirical studies, our analysis comes with a number of limitations.  We adopt 

a highly aggregated view of learning by focusing on learning intensity at the industry level. 

Clearly, there is likely to be considerable heterogeneity in products and learning rates within 

industries, perhaps even greater than the inter-industry variations. Moreover, our study does not 

shed any light on the mechanisms of learning e.g. factors within organizations such as training 

and engineering activities (Adler and Clark, 1991), structures and routines (Nelson and Winter, 

1982) that may affect learning.  Furthermore, it is to be expected that the meaning and context 

of organizational learning vary significantly across (and within) industries.  Since this paper 

follows a purely empirical approach and infers the importance of learning by examining the 

coefficient on cumulative output, the findings from this study are necessarily a very simplified 

and stylized representation of the learning environment.  Furthermore, learning-by-doing is only 

one form of organizational learning (Levitt and March 1988; Malerba 1992).  There are many 
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other forms of learning such as learning from others, which are not examined in this study.  

Finally, there are measurement issues that commonly afflict studies of productivity estimation.  

Notwithstanding these limitations, we believe that this aggregate approach provides a “big 

picture” view of the heterogeneity in industry learning-environments that complements detailed 

micro-level studies of learning. 

Although not a limitation, per se, the interpretation of the learning coefficient deserves 

some discussion.  As we measure it, the learning coefficient does not reveal two aspects of 

learning that have been considered in prior studies.  First, it does not tell anything about 

spillovers of learning across firms.  Firms can apply experience gained from one product to cost 

reduction or quality improvements in other (perhaps, similar) products (Argote, 1999; Benkard, 

2001; Irwin and Klenow, 1994) and it is reasonable to expect that learning “spills over” from one 

firm to another.  In our approach, all improvements resulting from such industry-wide learning 

spillovers are captured by the industry-year dummy variables.  As an extreme, an industry 

where some firms learn considerably from experience but all knowledge so generated is 

transferred to other firms immediately (thereby leaving the relative performances unchanged) 

would be measured as having a zero rate of learning.  However, in such a case, learning rates 

would not affect firm performance and a “zero” learning coefficient would not entirely be 

meaningless.  The second issue is organizational forgetting.  It has been established that the 

knowledge accumulated through learning depreciates rapidly (Argote, 1999; Benkard, 2001).  

The use of a single learning coefficient clearly masks underlying differences in the rate of 

depreciation.  A low learning coefficient could mean either a low learning rate combined with low 

rate of forgetting, or a high learning rate combined with rapid depreciation.  Unfortunately, our 

data do not permit us to reliably estimate the rates of forgetting.  Even so, the learning 

coefficient can still be meaningfully interpreted as “net rate of learning” or as the “net 

importance” of experience in the production process.  Moreover, there is almost nothing in the 
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prior literature that discusses whether discriminating between these scenarios has any 

managerial or policy implications.  Nevertheless, because this approach suppresses all 

differences in spillovers and depreciation, we must be cautious when referring to “high learning” 

or “low learning” industries.  They may not always be industries where firms “learn the most” or 

“learn the least”; rather they refer to industries where the firm’s own experience is more or less 

important in the production process. 

The present study establishes basic relationships between industry learning and firm 

performance, but many extensions are possible.  One would be to examine the mechanisms 

that explain the link between learning intensity and the heterogeneity of firm performance.  We 

have provided some potential theoretical reasons for this association; however, their importance 

must be sorted out.  More broadly, the learning estimates from this study can be used to 

analyze how variations in industry learning rates affect firm behavior.  Strategic choices that 

may be affected by learning include incentive structures, governance structures, investments in 

innovation, capital and technology, and perhaps even organizational structures and processes.  

For instance, a bigger role for learning from experience may require an incentive structure 

oriented towards long-term performance goals rather than short-term ones.  Another interesting 

line of inquiry would be to generalize our findings to examine how variations in the knowledge 

acquisition processes (e.g. through own learning vs. inter-firm spillovers vs. intra-firm spillovers 

etc.) across industries affect the observed heterogeneity.   

Heretofore, researchers have been constrained by the non-availability of learning rate 

data across a wide range of industries needed to address such questions.  This study provides 

industry specific estimates that may be used to explore the role of learning by doing, particularly 

in broader inter-industry contexts.  We must, however, reemphasize that we do not claim to 

provide a single “correct” set of learning rates.  Rather, we offer learning rates from different 

estimation methods that used in combination, provide a reasonably robust rank ordering of 
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industries based on their learning rates.   
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Figure 1: Inter-industry Heterogeneity in Learning-by-Doing 
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Figure 2: Industry Learning Environments and Firm Performance Heterogeneity 
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TABLE 1a 
Overall Descriptive Statistics (Census or First Stage Sample)a 

Variable Mean s.d Min Max 1 2 3 4 5 

1. Outputb/c 8.20 1.85        

2. Value Addedc 7.40 1.86   .93***     

3. Capital 6.62 2.12   .81*** .77***    

4. Labor  4.59 1.59   .87*** .85*** .75***   

5. Material  
 

7.29 2.12   .94*** .81*** .77*** .79***  

6. Prior Experience 9.21 2.24   .89*** .83*** .83*** .80*** .85*** 

Table 1b 
Overall Descriptive Statistics (Compustat or Second Stage Sample) 

1. Industry R&D intensity  0.02 0.02 0.00 0.12      

2. Industry advertising 
intensity  

0.02 0.02 0.00 0.08 -0.08***     

3. Number of firms 44.15 51.31 10 453 0.72*** -0.09***    

4. Industry sales ($ billion) 47.59 140.40 0.44 1,498 0.12*** -0.10*** 0.26***   

5. Industry q range (10th-90th 

pctile) c 
1.65 1.36 0.093 10.86 0.47*** 0.16*** 0.41*** 0.03  

6. Industry profitability range 
(10th-90th) c 

0.28 0.16 0.03 1.59 0.39*** 0.07*** 0.38*** -0.01 0.63** 

a. There are two separate samples. Table 1a refers to the first stage plant-level sample (n = 182,603 of which 170,666 are in SIC-3 industries that 

have at least 50 plants) for which we are not able to present the minimum and maximum due to disclosure restrictions on data pertaining to 

individual firms. Table 1b refers to the second stage sample based on Compustat data (n=1,523) 

b. Variables 1-6 in Table 1a are logarithms of their original values.  Please refer text for precise definition of variables.   

c. These variables are always dependent variables, hence, correlations between them are not meaningful.  

*p < 0.1 **p < 0.05 ***p < 0.01 
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TABLE 2 

Pooled Learning Coefficients 

Variable Model 1 
(OLS) 

Model 2 
(OLS) 

Model 3 
(OLS) 

Models 4-1 to 4-
117(OLS) 

1. Capital 0.271*** 
(0.003) 

0.12*** 
(0.003) 

0.07*** 
(0.003) 

-0.12 to 0.29 
(Details available 

on request) 

2. Labor 0.710*** 
(0.004) 

0.59*** 
(0.004) 

0.66*** 
(0.004) 

0.34 to 0.98 
(Details available 

on request) 

3. Prior Experience  0.26*** 
(0.004) 

0.23*** 
(0.004) 

0.00 to 0.60 
(Details available 
in Appendix A) 

4. Fixed Effects Year Year SIC-4 
Industry-Year 

SIC-3 Industry-
Year 

N 213,256 170,666 170,666 83 to 7,244 
(Details available 

on request) 
R2 0.80 0.81 0.85  

Adjusted R2 0.80 0.81 0.85  

a. The unit of analysis is plant-year.  Value added is the dependent variable.  Coefficients on dummies not presented.   

b. Models 4-1 to 4-117 are 117 separate OLS estimations along the lines of Model 2, one for each SIC-3 industry.  

*p < 0.1 **p < 0.05 ***p < 0.01.  Standard errors in parentheses (Models 1-3 present clustered standard errors that allow 
for arbitrary autocorrelation of errors within a plant). 
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TABLE 3: Inter-industry Heterogeneity in Learning-by-doinga 
 Model 5 

(OLS) 
Model 6 
(OLS) 

Model 7 
(OLS) 

Model 8b 

(OLS) 
Model 9b 

(FE) 
Model 10b 

(FE) 
1. Capital 0.064*** 

(0.003) 
0.074*** 
(0.003) 

0.077*** 
(0.005) 

By SIC-2 By SIC-2 By SIC-2 

2. Labor 0.647*** 
(0.004) 

0.665*** 
(0.004) 

0.667*** 
(0.007) 

By SIC-2 By SIC-2 By SIC-2 

3. Prior Experience 0.250*** 
(0.01) 

0.225*** 
(0.01) 

0.198*** 
(0.01) 

0.191*** 
(0.01) 

0.066*** 
(0.01) 

0.022* 
(0.01) 

4. Experience*Industry Wagesc -1.14*** 
(0.31) 

-0.526 
(0.37) 

0.083 
(0.52) 

0.069 
(0.57) 

0.742*** 
(0.14) 

0.036 
(0.475) 

5. Experience*Industry Capital Labor Ratioc 0.428*** 
(0.05) 

0.323*** 
(0.32) 

0.226*** 
(0.06) 

0.266*** 
(0.07) 

0.049*** 
(0.01) 

0.424*** 
(0.04) 

6. Experience*Industry Advertising Intensity   0.869*** 
(0.14) 

0.946*** 
(0.16) 

0.156*** 
(0.03) 

0.553*** 
(0.14) 

7. Experience*Industry R&D Intensity   0.446*** 
(0.10) 

0.503*** 
(0.11) 

0.037*** 
(0.01) 

1.35*** 
(0.08) 

8. Industry Wages 0.044*** 
(0.003) 

NA NA NA  0.004 
(0.01) 

9. Industry Capital Labor Ratioc -0.036*** 
(0.004) 

NA NA NA  -0.446*** 
(0.04) 

10. Industry R&D Intensityd  NA NA NA  -0.149*** 
(0.01) 

11. Industry Advertising Intensity d  NA NA NA  -0.047*** 
(0.02) 

12. Fixed Effects Year Industry-Year Industry-Year Industry-
Year 

Plant & 
Year 

Plant & 
Year 

N 182,603 182,603 71,824 71,824 71,824 71,824 

R2 0.82 0.83 0.83 0.83 0.91 0.93 

a. The unit of analysis is plant-year.  Log value added is the dependent variable.  Coefficients on dummies not presented.With industry-year 
effects, direct terms are not included because the dummies control for all changes at the industry-year level (e.g. industry R&D intensity).   

b. Models 8 to 10 allow for industry-specific (by SIC-2) capital and labor coefficients.  Given the large number of capital and labor 
coefficients, we do not present them here.  

c. Coefficients and standard errors divided by 1000 for presentation purposes. 
d. Coefficients and standard errors divided by 100 for presentation purposes. 
*p < 0.1 **p < 0.05 ***p < 0.01.  Standard errors in parentheses (Models 5-8 present clustered standard errors, which allow for arbitrary 
autocorrelation within a plant). 
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TABLE 4 

Learning-by-doing and Heterogeneity in Firm Performancea 

Model 11 Model 12 Model 13 Model 14 Model 15  Model 16 Model 17 Model 18 
Dependent Variable Profit 

Dispersion 
Profit 

Dispersion 
Profit 

Dispersion 
Profit 

Dispersion 
q 

dispersion 
q 

dispersion 
q 

dispersion 
q 

dispersion 
Method of estimating 
learning coefficient 

OLS OP ACF FE-SURV OLS OP ACF FE-SURV 

1. Industry Learning 
Intensity 

0.926*** 
(0.10) 

0.485*** 
(0.09) 

0.491*** 
(0.06) 

0.203** 
(0.08) 

1.41*** 
(0.14) 

0.803*** 
(0.12) 

0.677*** 
(0.08) 

0.027 
(0.13) 

2. Industry R&D 
Intensity 

0.050*** 
(0.01) 

0.048*** 
(0.01) 

0.046*** 
(0.01) 

0.049*** 
(0.01) 

0.102*** 
(0.01) 

0.097*** 
(0.01) 

0.097*** 
(0.01) 

0.075*** 
(0.02) 

3. Industry Advertising 
Intensity 

0.040*** 
(0.01) 

0.040*** 
(0.01) 

0.035*** 
(0.01) 

0.030*** 
(0.01) 

0.070*** 
(0.01) 

0.068*** 
(0.01) 

0.062*** 
(0.01) 

0.058*** 
(0.01) 

4. Industry Profitability 
(Mean) 

-0.131*** 
(0.04) 

-0.075* 
(0.04) 

-0.101** 
(0.04) 

-0.044 
(0.05) 

0.207*** 
(0.05) 

0.286*** 
(0.05) 

0.265*** 
(0.05) 

0.345*** 
(0.06) 

5. Industry Capital 
Intensity 

-0.110** 
(0.05) 

-0.047 
(0.05) 

-0.054 
(0.05) 

-0.095* 
(0.05) 

0.113* 
(0.06) 

-0.172** 
(0.07) 

0.114** 
(0.06) 

0.144** 
(0.07) 

6. Industry Sales -0.117*** 
(0.01) 

-0.105*** 
(0.01) 

-0.125*** 
(0.01) 

-0.100*** 
(0.01) 

-0.117*** 
(0.01) 

-0.100*** 
(0.01) 

-0.126*** 
(0.01) 

-0.095*** 
(0.02) 

7. Industry Number of 
Firms 

0.251*** 
(0.02) 

0.240*** 
(0.02) 

0.256*** 
(0.02) 

0.244*** 
(0.02) 

0.268*** 
(0.02) 

0.249*** 
(0.02) 

0.277*** 
(0.02) 

0.311*** 
(0.03) 

8. Fixed Effects Year Year Year Year Year Year Year Year 

N 1,523 1,523 1,523 979 1,523 1,523 1,523 979 

R2 0.38 0.37 0.37 0.39 0.55 0.54 0.54 0.55 

Adjusted R2 0.37 0.35 0.36 0.37 0.54 0.53 0.53 0.53 

a. The unit of analysis in all these regressions is SIC-3 industry-year.  All variables except the industry learning intensity are logarithms of 
their original values.  The dependent variable is the (logarithm of) difference between 90th and 10th percentiles of either firm profitability 
(Models 11-14) or firm q (Models 15-18).  Coefficients on dummies not presented.   

b. Models 11 and 15 use learning intensities computed using OLS.  Models 12 and 16 use Olley-Pakes (OP) based learning coefficients 
while Models 13 and 17 use an extension of the approach outlined in Ackerberg et al (2005).  Models 14 and 18 use learning intensities 
computed using plant fixed effects on the sample of survivors (at least 8 years). 

*p < 0.1 **p < 0.05 ***p < 0.01.  Robust standard errors in parentheses. 
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TABLE 5 

Learning-by-doing and Heterogeneity in Firm Performance: Robustness Checksa 
Dependent Variable Profit 

Dispersion 
Profit 

Dispersion 
Profit 

Dispersion 
Profit 

Dispersion 
q 

dispersion 
q 

dispersion 
q 

dispersion 
q 

dispersion 
Method of estimating 
learning coefficient 

OLS OP ACF FE-SURV OLS OP ACF FE-SURV 

1. 75th to 25th percentile as 
dependent variable 

0.717*** 
(0.10) 

0.426*** 
(0.08) 

0.430*** 
(0.06) 

0.213*** 
(0.08) 

1.34*** 
(0.13) 

0.789*** 
(0.11) 

0.593*** 
(0.08) 

0.130 
(0.12) 

2. Standard deviation as 
dependent variable 

0.170*** 
(0.02) 

0.109*** 
(0.02) 

0.102*** 
(0.01) 

0.038** 
(0.02) 

1.32*** 
(0.14) 

0.902*** 
(0.13) 

0.738*** 
(0.09) 

0.151 
(0.14) 

3. Learning ranks instead of 
coefficientsb 

0.396*** 
(0.06) 

0.366*** 
(0.06) 

0.384*** 
(0.06) 

0.142 
(0.09) 

0.649*** 
(0.08) 

0.582*** 
(0.07) 

0.510*** 
(0.06) 

-0.101 
(0.01) 

4.  “High” learning vs “low” 
learning classification 

0.123*** 
(0.02) 

0.099*** 
(0.02) 

0.221*** 
(0.02) 

0.021 
(0.02) 

0.187*** 
(0.03) 

0.139*** 
(0.03) 

0.1415*** 
(0.03) 

-0.038 
(0.03) 

5. Including only very 
focused firmsc 

1.01*** 
(0.20) 

0.551*** 
(0.16) 

0.710*** 
(0.12) 

-0.062 
(0.15) 

1.05*** 
(0.24) 

0.512*** 
(0.18) 

0.853*** 
(0.14) 

-0.148 
(0.19) 

6. SIC-4 as industry 
definition (OLS only) 

0.452*** 
(0.11)    

0.951*** 
(0.16)    

7. Excluding inds. ending 
with “9” and including # of 
SIC-4 codes as control 

0.826*** 
(0.11) 

0.372*** 
(0.09) 

0.440*** 
(0.07) 

0.239*** 
(0.08) 

1.25*** 
(0.15) 

0.661*** 
(0.13) 

0.583*** 
(0.09) 

0.008 
(0.13) 

8. Industry level instead of 
industry-year levelc 

0.660* 
(0.35) 

0.353 
(0.22) 

0.561** 
(0.22) 

0.044 
(0.27) 

0.696 
(0.49) 

0.273 
(0.31) 

0.566* 
(0.31) 

-0.552 
(0.46) 

9. Without taking logarithms 0.264*** 
(0.04) 

0.124*** 
(0.03) 

0.126*** 
(0.02) 

-0.038 
(0.03) 

2.00*** 
(0.32) 

1.11*** 
(0.25) 

0.916*** 
(0.17) 

-0.642** 
(0.25) 

10. Dependent variable not 
logged 

0.351*** 
(0.04) 

0.197*** 
(0.03) 

0.188*** 
(0.02) 

0.072** 
(0.03) 

2.87*** 
(0.31) 

1.89*** 
(0.25) 

1.49*** 
(0.17) 

0.294 
(0.27) 

11. Exclude industry-years 
with < 25 firms  

0.888*** 
(0.13) 

0.585*** 
(0.10) 

0.441*** 
(0.09) 

0.182** 
(0.09) 

1.26*** 
(0.16) 

0.972*** 
(0.13) 

0.659*** 
(0.11) 

0.233* 
(0.13) 

12. Cluster standard errors at 
SIC-3 levele 

0.926*** 
(0.21) 

0.485** 
(0.20) 

0.491*** 
(0.15) 

0.203 
(0.26) 

1.41*** 
(0.27) 

0.803*** 
(0.27) 

0.677*** 
(0.17) 

0.027 
(0.35) 

13. Exclude two highest and 
two lowest learning inds. 

0.726*** 
(0.16) 

0.523*** 
(0.12) 

0.399*** 
(0.08) 

0.175 
(0.15) 

1.28*** 
(0.21) 

0.926*** 
(0.16) 

0.628*** 
(0.10) 

-0.065 
(0.21) 

14. Include SIC-2-year fixed 
effects 

0.974*** 
(0.14) 

0.380*** 
(0.12) 

0.408*** 
(0.08) 

0.010 
(0.11) 

1.39*** 
(0.20) 

0.509*** 
(0.17) 

0.540*** 
(0.11) 

-0.033 
(0.16) 
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Dependent Variable Profit 
Dispersion 

Profit 
Dispersion 

Profit 
Dispersion 

Profit 
Dispersion 

q 
dispersion 

q 
dispersion 

q 
dispersion 

q 
dispersion 

Method of estimating 
learning coefficient 

OLS OP ACF FE-SURV OLS OP ACF FE-SURV 

15. Time period 1973-1984f 
(OLS only) 

0.640*** 
(0.17)    

2.40*** 
(0.23)    

16. Time period 1985-2000f 
(OLS only) 

0.613*** 
(0.15)    

1.50*** 
(0.21)    

17. Learning coefficients with 
R&D controls (OLS only)g 

0.349*** 
(0.06)    

0.633*** 
(0.08)    

a. This table provides the results of robustness checks that use the same type of regressions as in Table 4, but with different measures of 
performance heterogeneity, level of aggregation, choice of time periods, assumptions about error correlation structures etc.  Each line in this 
table is comparable to line 1 from Table 4.  Only the coefficients and standard errors on industry learning intensity are presented.  Coefficients 
on other variables are available on request.  “Method of estimating learning coefficient” refers to the estimation approach using to estimate the 
learning rates in Equation 3. OLS uses the OLS method.  OP uses an extension of Olley-Pakes (1996), ACF uses an extension of Ackerberg 
et al (2005) and FE-SURV uses plant fixed effects specifications on a sample of survivors.     

b. The coefficients and standard errors have been multiplied by 100 for presentation purposes. 

c. This regression includes only firms whose largest segment (by sales) accounts for at least 95% of the total sales.  Due to non-availability of 
data before 1984, this covers the period 1984 to 2000. 

d. The unit of analysis in this regression is industry – hence, there are only 72 observations for the OLS, OP and ACF methods and 49 for the FE 
approach. 

e. The standard errors are computed allowing for arbitrary autocorrelation of errors within an SIC-3 industry.   

f. These use learning coefficients estimated for the relevant time period as an independent variable.  

g. Learning coefficients used in this regression are estimated after controlling for firm specific R&D expenditure (the sample changes because 
not all firms report R&D). 
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APPENDIX A: INDUSTRY-BY-INDUSTRY LEARNING COEFFICIENTS 

SIC Rank OLS OP ACF FESURV 
 (OLS) Coeff. Std Error Coeff. Std Error Coeff. Std Error Coeff. Std Error

        201           99      0.148  (0.02)      0.228  (0.05)      0.253  (0.11)       0.208  (0.06)  
        202           79      0.180  (0.02)      0.268  (0.08)      0.222  (0.09)      -0.018  (0.08)  
        203           18      0.321  (0.02)      0.436  (0.06)      0.503  (0.05)       0.122  (0.05)  
        204           30      0.273  (0.02)      0.326  (0.06)      0.546  (0.06)       0.109  (0.06)  
        205           23     0.294  (0.02)      0.491  (0.08)      0.243  (0.05)  
        206           58      0.207  (0.04)      0.332  (0.13)      0.396  (0.12)  
        207           17      0.323  (0.04)      0.327  (0.10)      0.289  (0.11)  
        208           21      0.300  (0.02)      0.389  (0.06)      0.488  (0.08)       0.204  (0.08)  
        209           38      0.260  (0.02)      0.395  (0.04)      0.296  (0.05)       0.080  (0.08)  
        221         101      0.145  (0.07)      0.372  (0.14)      0.305  (0.17)   
        222           77      0.181  (0.04)      0.140  (0.14)      0.339  (0.21)   
        224           98      0.151  (0.08)      0.056  (0.18)      0.156  (0.22)   
        225           72      0.187  (0.02)      0.245  (0.04)      0.300  (0.06)       0.212  (0.07)  
        226           94      0.163  (0.03)      0.221  (0.07)      0.247  (0.10)   
        227           16      0.326  (0.05)      0.348  (0.18)      0.262  (0.19)   
        228         116      0.041  (0.03)      0.098  (0.07)      0.158  (0.12)   
        229           55      0.213  (0.03)      0.421  (0.08)      0.178  (0.07)   
        231           26      0.284  (0.04)      0.341  (0.15)      0.371  (0.14)   
        232           92      0.165  (0.02)      0.238  (0.04)      0.182  (0.05)       0.212  (0.09)  
        233           29      0.278  (0.01)      0.415  (0.04)      0.401  (0.02)       0.116  (0.08)  
        234           46      0.241  (0.04)      0.298  (0.08)      0.152  (0.07)   
        235           32      0.271  (0.08)      0.202       0.488    
        236           40      0.254  (0.03)      0.235  (0.12)      0.306  (0.13)   
        238           35      0.266  (0.04)      0.456  (0.10)      0.220  (0.10)   
        239           25      0.286  (0.02)      0.394  (0.04)      0.304  (0.06)       0.215  (0.09)  
        241           56      0.213  (0.01)      0.352  (0.04)      0.220  (0.05)    
        242           64      0.202  (0.01)      0.288  (0.03)      0.275  (0.03)       0.003  (0.06)  
        243           61      0.205  (0.01)      0.263  (0.03)       0.223  (0.06)       0.150  (0.06)  
        244         110      0.093  (0.02)      0.198  (0.05)      0.244  (0.06)   
        245         109      0.108  (0.02)      0.198  (0.03)      -0.005  (0.13)       0.049  (0.05)  
        249           82      0.177  (0.02)      0.253  (0.04)      0.265  (0.05)       0.188  (0.06)  
        251           87      0.170  (0.01)      0.306  (0.03)      0.130  (0.06)       0.024  (0.06)  
        252           67      0.198  (0.03)      0.370  (0.07)      0.292  (0.09)   
        253           76      0.182  (0.04)      0.311  (0.08)      0.316  (0.09)   
        254           96      0.154  (0.02)      0.308  (0.07)      0.224  (0.06)   
        259           53      0.215  (0.03)      0.378  (0.06)      0.230  (0.11)   
        262         115      0.054  (0.04)      0.239  (0.20)      0.166  (0.25)   
        265           69      0.192  (0.01)      0.336  (0.03)      0.337  (0.07)       0.160  (0.04)  
        267           37      0.260  (0.03)      0.236  (0.14)      0.486  (0.08)     
        281           20      0.310  (0.02)      0.427  (0.08)      0.531  (0.08)       0.054  (0.07)  
        282             9      0.385  (0.03)      0.466  (0.09)      0.465  (0.07)   
        283             2      0.547  (0.03)      0.800  (0.09)      0.718  (0.09)   
        284           10      0.372  (0.03)      0.430  (0.12)      0.542  (0.10)   
        285           15      0.342  (0.03)      0.574  (0.07)      0.589  (0.20)   
        286             8      0.388  (0.03)      0.565  (0.14)      0.524  (0.11)   
        287             6      0.413  (0.03)      0.505  (0.12)      0.531  (0.10)   
        289             5      0.413  (0.02)      0.485  (0.04)      0.536  (0.04)       0.154  (0.06)  



Industry Learning Environments and the Heterogeneity of Firm Performance  

 

46

SIC Rank OLS OP ACF FESURV 
 (OLS) Coeff. Std Error Coeff. Std Error Coeff. Std Error Coeff. Std Error

        291             3      0.451  (0.10)      0.421  (0.34)      0.708  (0.34)    
        295           52      0.224  (0.02)      0.325  (0.05)      0.362  (0.05)       0.064  (0.06)  
        299           11      0.369  (0.05)      0.490  (0.2)      0.604  (0.31)   
        305           19      0.313  (0.05)      0.466  (0.14)      0.363  (0.11)   
        306           88      0.169  (0.02)      0.298  (0.07)      0.135  (0.08)   
        308           48      0.237  (0.01)      0.357  (0.02)      0.386  (0.03)       0.147  (0.05)  
        311         117      0.005  (0.07)      0.041  (0.23)      0.183  (0.18)   
        313           39      0.256  (0.09)      
        314           43      0.246  (0.03)      0.412  (0.09)      0.213  (0.10)   
        316         103      0.144  (0.08)         0.125  (0.17)   
        317         113      0.076  (0.07)      0.335  (0.20)      -0.021  (0.16)   
        319         104      0.127  (0.07)      0.300  (0.30)      -0.105  (0.26)   
        321           78      0.181  (0.05)      0.047      0.370   
        322         114      0.067  (0.03)      0.213  (0.10)      0.293  (0.13)   
        323           73      0.185  (0.02)      0.326  (0.07)      0.265  (0.09)   
        324             7      0.389  (0.08)       0.503       -0.100  (0.33)   
        325           12      0.360  (0.03)      0.524  (0.11)      0.445  (0.09)       0.019  (0.12)  
        326           97      0.152  (0.03)      0.234  (0.08)      0.238  (0.08)    
        327           36      0.265  (0.01)      0.358  (0.02)      0.415  (0.03)      -0.025  (0.08)  
        328           31      0.272  (0.04)      0.294  (0.09)      0.126  (0.12)   
        329           14      0.354  (0.02)      0.501  (0.05)      0.323  (0.08)   
        331           90      0.169  (0.02)      0.290  (0.05)      0.280  (0.05)       0.342  (0.07)  
        332           85      0.172  (0.02)      0.267  (0.05)      0.279  (0.08)       0.215  (0.10)  
        333           45      0.241  (0.05)      -0.091       0.086  (0.17)      -0.160  (0.12)  
        334           54      0.214  (0.05)      0.170  (0.11)      0.340  (0.09)    
        335           68      0.194  (0.02)      0.239  (0.04)      0.224  (0.04)       0.297  (0.07)  
        336           33      0.269  (0.03)      0.353  (0.06)      0.317  (0.08)       0.005  (0.11)  
        339         106      0.123  (0.03)      0.222  (0.09)      0.265  (0.10)      -0.035  (0.22)  
        341           22      0.299  (0.02)      0.510  (0.08)      0.560  (0.07)       0.099  (0.04)  
        342           75      0.184  (0.02)      0.228  (0.04)      0.258  (0.06)      -0.090  (0.05)  
        343           59      0.207  (0.03)      0.382  (0.12)      0.319  (0.10)    
        344           80      0.178  (0.01)      0.302  (0.03)      0.298  (0.03)      -0.001  (0.04)  
        345           74      0.184  (0.02)      0.271  (0.06)       0.325  (0.10)    
        346           84      0.173  (0.02)      0.283  (0.03)      0.199  (0.04)       0.061  (0.05)  
        347           63      0.202  (0.01)      0.318  (0.07)      0.325  (0.05)   
        348           83     0.174  (0.05)      0.210  (0.17)      0.034  (0.22)   
        349           71      0.189  (0.01)      0.289  (0.03)      0.208  (0.04)       0.095  (0.04)  
        351           86      0.170  (0.04)      0.190  (0.12)      0.117  (0.11)   
        353           89      0.169  (0.02)      0.331  (0.03)      0.238  (0.06)       0.038  (0.06)  
        354           62      0.202  (0.01)      0.275  (0.02)      0.247  (0.04)       0.150  (0.04)  
        355           51      0.227  (0.02)      0.363  (0.05)      0.289  (0.07)       0.012  (0.07)  
        356           47      0.237  (0.01)      0.341  (0.03)      0.251  (0.03)       0.214  (0.03)  
        357             1      0.602  (0.03)      0.816  (0.06)      0.982  (0.05)       0.658  (0.1)  
        358           44      0.246  (0.02)      0.330  (0.05)      0.343  (0.05)       0.071  (0.05)  
        359           93      0.163  (0.01)      0.278  (0.02)      0.221  (0.04)       0.053  (0.07)  
        361           24      0.290  (0.02)      0.375  (0.06)      0.378  (0.07)    
        362           66      0.200  (0.02)      0.340  (0.09)      0.197  (0.08)      -0.019  (0.07)  
        363         105      0.126  (0.04)      0.329  (0.09)      0.402  (0.13)    
        364           49      0.233  (0.02)      0.321  (0.06)      0.284  (0.09)      -0.028  (0.09)  
        365         107      0.122  (0.04)      0.306  (0.10)       0.405  (0.11)    
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SIC Rank OLS OP ACF FESURV 
 (OLS) Coeff. Std Error Coeff. Std Error Coeff. Std Error Coeff. Std Error

        366           50      0.229  (0.03)      0.430  (0.08)      0.409  (0.07)       0.087  (0.10)  
        367           13      0.355  (0.02)      0.720  (0.06)      0.693  (0.07)       0.548  (0.04)  
        369           28      0.278  (0.02)      0.409  (0.11)      0.479  (0.06)       0.172  (0.07)  
        371           70      0.191  (0.01)      0.323  (0.03)      0.332  (0.04)       0.134  (0.03)  
        372           95      0.157  (0.02)      0.298  (0.05)      0.194  (0.09)       0.165  (0.06)  
        373         108      0.108  (0.02)      0.167  (0.04)      0.104  (0.04)   
        374         102      0.144  (0.05)      0.335  (0.14)      0.172  (0.10)   
        375           91      0.166  (0.06)      0.526  (0.21)      0.333  (0.15)   
        379         112      0.091  (0.02)      0.123  (0.07)      0.147  (0.09)   
        381           27      0.280  (0.07)      0.388  (0.12)       0.238  (0.09)   
        382           81      0.178  (0.02)      0.279  (0.03)      0.147  (0.04)       0.236  (0.05)  
        384           34      0.267  (0.02)      0.390  (0.04)      0.363  (0.07)       0.139  (0.05)  
        385         111      0.093  (0.04)      -0.050  (0.14)      0.236  (0.12)   
        386             4      0.416  (0.04)      0.551  (0.11)      0.559  (0.15)   
        391           42      0.250  (0.03)      0.362  (0.06)      0.369  (0.07)   
        393         100      0.146  (0.04)      0.079  (0.11)      -0.040  (0.16)   
        394           41      0.251  (0.02)      0.378  (0.08)      0.373  (0.06)   
        395           65      0.202  (0.05)      0.494  (0.28)      0.696  (0.15)   
        396           57      0.209  (0.04)      0.333  (0.14)      0.156  (0.15)   
        399           60      0.206  (0.02)      0.292  (0.04)      0.267  (0.06)   

Mean  0.227   0.331  0.308  0.121  
Std. Dev  0.097  0.142  0.172  0.142  

Min  0.005  -0.091  -0.105  -0.160  
Max  0.602  0.816  0.982  0.658  

Spearman’ Rank Correlation Coefficient (p-values in parentheses) 
OLS  1  0.74(0.00)  0.63(0.00)  0.09(0.54)  

OP    1  0.57(0.00)  0.12(0.41)  
ACF     1  0.18(0.21)  

Notes:   
(1) Rank (OLS) represents the rank based on the OLS learning coefficient. 
(2) “OLS” uses the OLS method.  “OP” uses an extension of Olley-Pakes (1996), “ACF” uses an 

extension of Ackerberg et al (2005) and “FE-SURV” uses plant fixed effects specifications on a 
sample of survivors that survived at least till age 8. 

(3) Standard errors presented in parentheses.  Standard errors for OP and ACF methods were 
generated by bootstrapping the sample 50 times (the resampling unit was a plant, not a plant-
year).   

(4) Missing cells indicate that there were less than 50 plants or that the sample size was too small to 
meet Census disclosure requirements.  
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 APPENDIX B: ROBUSTNESS CHECKS 

Are we measuring learning-by-doing? 

We tested if there are other phenomena that manifest as a high coefficient on cumulative 

output.  While we cannot rule all possible alternatives out, we attempt to identify and argue 

against some important ones.  

Survivor Bias and Sample Selection: With OLS, endogeneity of exit may bias the 

measured coefficient on cumulative output.  If accumulated experience helps firms withstand 

bad “performance shocks” and thus reduces the probability of exit, then the measured 

coefficient will be biased downward.  On the other hand, if accumulated experience has no 

effect on exit, then the bias may be upward, the argument being that only “good” firms survive 

and they would tend to have both higher cumulative output and higher productivity, resulting in a 

high “learning” coefficient.  However, these arguments does not appear to hold in our study for 

several reasons.  First, the Olley-Pakes and ACF approaches make explicit assumptions about 

selection, and within the bounds of these assumptions the estimates correct for selection bias.  

Next, if the second argument were true, we should see a strong positive correlation between the 

turnover rate of firms (entry rate + exit rate) and our measured “learning”.  However, we see no 

statistically significant relationship between industry turnover rate and the measured learning 

rate (results available on request).  Third, using learning estimates from a fixed effects 

specification on a sample of survivors seems to support some of our subsequent results on the 

heterogeneity of firm performance.   

We also tested the robustness of our results to the choice of our sample.  Using a 

sample that includes only ASM plants (which have better quality data) and relaxing our condition 

that plants not have a gap of more than 2 years between two consecutive years produced 

learning estimates that were highly correlated with our baseline estimates (results available on 

request).   

R&D investments: Sinclair et al (2000) argue that it is specific R&D efforts that cause 
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learning-by-doing. If all the learning were due to R&D, we should observe no learning once we 

include R&D as a control.  Without controlling for R&D, we would observe high R&D industries 

to have high learning.  Since the industries with high measured learning in our study are R&D 

intensive industries, we attempt to rule out R&D as solely driving the results.  However, we lack 

detailed data on plant-level R&D and hence, we rely on a more rudimentary check. We use firm-

level R&D from Compustat as controls and re-estimate the learning coefficients. The rank 

correlation between this set of learning coefficients and our original estimates is 0.67 and 

statistically significant at the 0.01% level.17  Furthermore, using these revised learning 

coefficients did not change the subsequent results on firm performance heterogeneity (Row 17 

in Table 5). 

Measurement errors in capital: It is well known that there are errors with measuring 

capital.  If it were true that such measurement errors were more prevalent in some industries 

(e.g. in hi-tech industries), then we may observe a high measured rate of learning in such 

industries.  While there is no known way to completely rule this out, we re-estimate our learning 

coefficients using an alternative measure of capital instead of the perpetual inventory method 

used in the study.  Specifically, we use the year-end book value of assets and find that the 

resulting learning coefficients are highly correlated with our original estimates.   

Industry life cycles: The need for learning-by-doing may be intricately linked to industry 

life cycles.  For instance, early in the industry life cycle, firms may need to learn mostly on their 

own.  Furthermore, this is also a period of great uncertainty and consequently higher 

heterogeneity of performance.  As the industry matures, dominant design(s) emerge and firms 

may be able to benefit from others, thereby reducing the need for own learning.  Concomitantly, 

the uncertainty also decreases, reducing performance heterogeneity.  While this is certainly 

consistent with our arguments (note that we do not make any exhaustive claims over what gives 

                                                 
17 Please note that the sub-sample with R&D data is much smaller than the overall sample.  
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rise to learning-by-doing), that we find exit rates to be uncorrelated with learning intensities 

suggests that industry life cycles are not the sole driving factor here.   

Alternative production functions: We tested the robustness to relaxing the Cobb-Douglas 

production function form adopted here.  Specifically, we estimated using OLS, a version of the 

Translog production function (yijt=ajt+αj.kijt+ α’j.(kijt)2+βj.lijt+ β’j.(lijt)2+ γj (kijt)(lijt) + λj.xijt+εijt).  These 

learning coefficients were highly correlated with our baseline estimates.   

Learning-by-doing and heterogeneity of firm performance 

Table 5 presents the results of robustness checks on this aspect.   

Alternative measures of heterogeneity: So far, we have used the difference between the 

90th and 10th percentiles as the measure of firm performance heterogeneity.  Rows 1 and 2 use 

the inter-quartile range (difference between the 75th and 25th percentiles) and standard deviation 

of firm performance respectively.  We observe that the coefficient on learning intensity is 

strongly positive in all but one specification.   

Ordinal measures of learning intensity: In our baseline results, we directly used the 

estimated learning intensities as measures of learning-by-doing.  Since the estimated learning 

intensities vary across different specifications, we check if using ordinal measures makes a 

difference.  Row 3 uses the industry learning ranks (based on the estimated learning coefficient) 

instead of the estimated learning intensities.  Row 4 uses a simple dummy variable that divides 

industries into “high learning” and “low learning” based on the median estimated learning 

coefficients.  Once again, the results are statistically significant in almost all specifications.   

Excluding diversified firms: Our results use the firm’s primary SIC code to assign firms to 

industries.  However, many firms in Compustat are diversified and hence, it may be argued that 

it is inappropriate to use a single learning coefficient for such firms.  Using the Compustat 

business segments data from 1984 to 2000, we select firms that have a single SIC-3 segment 

that comprises at least 95% of their total sales and estimate Equation 5 for these firms. Row 5 

presents the results.  The results using learning estimates from all non-fixed effects 
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specifications are strongly positive but the regressions using learning coefficients from fixed-

effects models become statistically insignificant.  We must, however, note that when using this 

approach, the number of industry-year cells with adequate number of firms falls considerably.18 

Level of aggregation: Since it may be argued that SIC-3 digit is a very high level of 

aggregation, we estimate learning intensity at the SIC-4 digit level using OLS (the sample size is 

too small to let us use the other specifications) and repeat our test.19  Row 6 shows that even 

with a finer industry definition, our results hold.  Another possible concern is that the definition of 

some SIC-3 industries are simply much more heterogeneous than others. To rule this possibility 

out, (a) we excluded all SIC-3 industries ending with “9” (usually “not elsewhere classified” 

industries) and (b) included the number of SIC-4 digit codes within a SIC-3 as a control in 

Equation 5.  The results remained statistically significant (Row 7) for most specifications. 

Other econometric concerns:  Rows 8 to 17 provide results to alleviate other possible 

econometric concerns such as the use of industry-year as a unit of analysis (check: industry as 

a unit of analysis), errors being correlated within an industry (check: cluster errors within an 

industry), taking logarithms (checks: not taking logarithms at all and not taking logarithms for the 

dependent variable), the choice of 10 firms in an industry-year as the cut-off for inclusion 

(check: use 25 firms as cut-off), influence of outliers (check: exclude the top two and bottom 

                                                 
18 A related concern might be that not all plants used to estimate industry learning rates belong 

to Compustat firms and hence, that it might be problematic to apply the learning rates from 

Census data to Compustat.  We estimated learning coefficients using only a (much smaller) 

sample of plants that could be matched to Compustat firms and found that even based on these 

coefficients, the relationship between learning-by-doing and heterogeneity of firm performance 

remained positive and statistically significant.  

19 The rank correlation between the SIC-3 estimates of learning and the weighted average SIC-4 

estimates belonging to the same SIC-3 industry is about 0.88.   
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industries in terms of learning rates, choice of time period (check: separate 1973-1984 and 

1985-2000), other unobserved industry factors (check: joint SIC2-year dummies).  The results 

remain statistically significant for a major part, though not all, of these alternative specifications.  

Please note that sample size constraints prevented us from using non-OLS approaches in some 

cases.  To summarize, our results appear to hold under a variety of different specifications and 

it seems reasonable to conclude that we are measuring learning-by-doing, at least in a rank-

order sense.  
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 APPENDIX C: NOTE ON OP AND ACF ESTIMATION APPROACHES  

The basic OP and ACF methods (without any experience term) write the production function as:  

vijt=ajt+αj.kijt+βj.lijt+ωijt+θijt 

where ωijt is a and the only heterogeneity that is not known to us but known to the firm and 

incorporated into its decisions and θijt is a completely exogenous error term.  Both approaches 

assume that ωijt can be written as:  

ωijt=E[ωijt|ωijt-1] + ξijt where E[ξijt]=0    (C1) 

An AR(1) process would be a special case of C1.  Suppose, we could somehow estimate ωijt, 

and hence, ξijt.  Then, we could make assumptions about when firms decide on their inputs to 

get identifying moment conditions.  Specifically, these approaches assume that capital at period 

t is completely decided at period t-1 when the firm knows only ωijt-1 and the expected value of 

ωijt, which then implies that the capital decision at time t is uncorrelated with the unexpected 

change ξijt.  So, we have  

E[ξijt|kijt]=0      (C2) 

This can then be used to identify the capital coefficient αj using GMM estimation.   

 In order to estimate the learning coefficient, we add a cumulative output term (xijt) to the 

above equation and assume that the prior cumulative experience of a firm at time t is completely 

determined at time t-1.  Based on the reasoning above, it follows that  

E[ξijt|xijt]=0      (C3) 

which can be used to identify the learning coefficient λj.   

To estimate ωijt, the OP method assumes that an observable decision (e.g. capital 

investment) is a strictly increasing function of ωijt and capital i.e. iijt=f(ωijt, kijt), which can be 

inverted to “back out” the unobserved heterogeneity i.e. ωijt =f-1(iijt, kijt), f-1 approximated using a 

higher-order polynomial.  In our case, we assumed that firm capital investment will also be a 

function of cumulative experience and hence, that ωijt =f-1(iijt, kijt, xijt).  The ACF approach adds 

labor in addition to the other terms into this function.  We largely followed the original papers 
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with regard to implementation.  The specific steps used to estimate the learning coefficient by 

the two approaches are given below.  To avoid clutter, we drop the subscripts ‘i’ and ‘j’. 

OP Method 

Step 1: Obtaining the labor coefficient: Regress using OLS, yt on labor (lt), and a third degree 

polynomial of it, kt and xt.  This gives the estimated labor coefficient β*.   

Step 2: “Backing out” the unobserved heterogeneity: Obtain the predicted values of (yt- β*.lt), 

which are unbiased estimates of αkt+λxt+ωt.  Call these predicted values φ*t.   

Step 3: Selection correction: Obtain the predict values from a probit regression of an exit 

dummy on a third degree polynomial of it, kt and xt.  Call these predicted values P*t 

Step 4: Estimate the capital and learning coefficients: Use a non-linear regression of the 

following form: φ*t = αkt+λxt+third-degree polynomial in (φ*t-1-αkt-1-λxt-1) and P*t-1 

ACF Method  

We use the decision on materials expenditure mt to invert out the unobserved heterogeneity.  

We assume labor inputs lt are decided at t-1 and that the exit decision is made at t-1 (which 

implies we do not need a separate selection correction step as above) 

Step 1: Regress using OLS, yt on a polynomial of lt, mt, kt and xt.  Obtain predicted values of yt, 

which are unbiased estimates of αkt+βlt,+λxt +ωt  (So, no coefficients are estimated here) 

Step 2: Choose some initial set of parameter values for α, β and λ.  Using the predicted values 

from Step 1 and the chosen parameter values, obtain the estimated ωt.   

Step 3: Regress using OLS, the ωt from Step 2 on a polynomial in ωt-1.  The residuals from the 

regression give the estimated ξt in Equation C1. 

Step 4: Using the estimated ξt, say ξ*t, construct the empirical equivalent of the moment 

conditions C2 and C3 i.e. (1/N)(Σ k2
t(ξ*t)2 +x2

t(ξ*t)2) where N is the sample size.   

Step 5: Check if the sum of squares in Step 4 is close to zero.  If yes, the parameter values in 

Step 2 are the estimated coefficients.  If not, change parameter values in Step 2 and repeat till 

the condition is achieved.   
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